PHLING[®]


Smart 信号板使用手册(V1.0)

深圳飞凌电子技术有限公司 http://www.szphling.com

目 录

手册更新记录	1
指示图标	1
1. 概述	2
2. 产品特点	2
3. 安装和拆卸信号板	2
4. 只需一步设置	3
5. Smart 信号板-产品选型	4
6. 寄存器映射关系	5
7. 指示灯说明	6
8. 使用说明	7
8.1 SB CM01	7
8.2 SB CM01-i485	7
8.3 SB CM01-R485	8
8.4 SB CM01-B485	8
8.5 SB CM01-R232	9
8.6 SB DE02	9
8.7 SB DE04	10
8.8 SB DE06	10
8.9 SB QT02	11
8.10 SB QT04	11
8.11 SB QT06	12
8.12 SB DT04	12
8.13 SB DT06	13
8.14 SB AE01	13
8.15 SB AE01-6AA0	14
8.16 SB AE02	15
8.17 SB AE04	16
8.18 SB AE06	17
8.19 SB AQ01	18
8.20 SB AQ01-6AA0	
8.21 SB AQ02	19
8.22 SB AQ04	20
8.23 SB AM03	21
8.24 SB AM04	22
8.25 SB AM05	23
8.26 SB AM06	24
8.27 SB AR02	25
8.28 SB AR04	28
8.29 SB AN04	30
8.30 SB AN06	32

0.41 GD 4504	22
8.31 SB AT04	33
8.32 SB AW01	35
8.33 SB AW02	36
8.34 变送器接线示意图	
9. 技术参数	37
10. 常见问题 FAQ	40
11. 技术支持与联系方式	42
Ac. 1 > -44 A MAANA & 4	

更新时间	版本	备注
2022年5月	V1.0	Smart 信号板使用手册创建

指示图标

图标	描述
Ţ.	注意: 设备无法正常使用的情况
Ø	提示: 有助于设备使用的额外说明

1

1. 概述

Smart 系列信号板即插即用,无需安装任何库;无需编程,直接映射至内部寄存器,主机可以直接读写;使用方法与原装信号板几乎一致,完美兼容。资源点更多,种类更丰富,价格更低,性能稳定。

2. 产品特点

- 支持 9.6k、19.2k、187.5k 波特率,速度更快;
- 带错误和故障自我检测功能,有相关标志位和指示灯输出,方便调试和维护;
- 模拟量输入端口滤波深度可调,灵活适用不同应用场景;
- 传感器类型可自行设置,适用范围更广;
- 模拟量支持正负电压或电流信号输入,输入范围更广;
- 接口带 ESD 保护,适应复杂工业环境;
- 采用 TI、NXP、瑞萨、三星、TDK、村田等国际大厂电子器件设计,稳定可靠。

3. 安装和拆卸信号板

注意: Smart 主机不支持热插拔,绝对禁止带电安装和拆卸信号板。

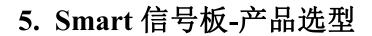
参考 Smart 系统手册 3.3.3 节。摘录如下:

表格 3-3 安装信号板

任务	步骤
	请按以下步骤安装信号板或电池板
	1. 确保 CPU 和所有 S7-200 SMART 设备已与电源断开连接。
and a second	2. 卸下 CPU 上部和下部的端子块盖板。
	3. 将螺丝刀插入 CPU 上部接线盒盖背面的槽中。
	4. 轻轻将盖撬起并从 CPU 上卸下。
	5. 将信号板或电池板直接向下放入 CPU 上部的安装位置中。
	6. 用力将模块压入该位置直到卡入就位。
	7. 重新装上端子块盖板。
	per ne matematische Antibellieten. Se poulitatische Seine Poulitatische Seine

4. 只需一步设置

在系统块中组态为 SB CM01,如下图:



将系统块下载进 PLC 并运行, DIAG 指示灯长亮绿灯,设置成功。 下面就可以直接读写映射的寄存器,以 SB AM06 为例,如下图:

网络 1 表示读取第一路模拟量输入通道数值到 VW0 中;

网络 2 表示第一路模拟量输出通道输出 20ma 或者 10V (27648 对应满量程 10V 和 20ma)。

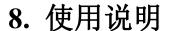
通讯信号板	描述	组态方式	功耗	24V 供电
F7 288-5CM01-0AA0	1路 RS485 通讯口或一路 RS232 通讯口,带 ESD 保护	SB CM01	1W	不需要
F7 288-5CM01-i485	1路 RS485 通讯口,带 ESD 保护,带隔离	SB CM01	1W	不需要
F7 288-5CM01-R485	1 路 RS485 通讯口,带 ESD 保护	SB CM01	1W	不需要
F7 288-5CM01-B485	1路 RS485 通讯口,带 ESD 保护,集成电池	SB CM01	1W	不需要
F7 288-5CM01-R232	1 路 RS232 通讯口,带 ESD 保护	SB CM01	1W	不需要
数字量信号板	描述	组态方式	功耗	24V 供电
F7 288-5DE02-0AA0	2 路数字量输入	SB DT04	0.5W	不需要
F7 288-5DE04-6AA0	4 路数字量输入	SB CM01	0.8W	不需要
F7 288-5DE06-6AA0	6 路数字量输入	SB CM01	1W	不需要
F7 288-5QT02-0AA0	2 路晶体管输出	SB DT04	0.5W	需要
F7 288-5QT04-6AA0	4 路晶体管输出	SB CM01	0.8W	需要
F7 288-5QT06-6AA0	6 路晶体管输出	SB CM01	1W	需要
F7 288-5DT04-0AA0	2 路数字量输入 2 路晶体管输出	SB DT04	1W	需要
F7 288-5DT06-6AA0	4路数字量输入2路晶体管输出	SB CM01	1W	需要
模拟量信号板	描述	组态方式	功耗	24V 供电
F7 288-5AE01-0AA0	模拟量1路输入(支持电压或电流)	SB AE01	1.5W	不需要
F7 288-5AE01-6AA0	模拟量1路输入(支持电压或电流)	SB CM01	1.5W	不需要
F7 288-5AE02-6AA0	模拟量 2 路输入(支持电压或电流)	SB CM01	1.5W	不需要
F7 288-5AE04-6AA0	模拟量 4 路输入(支持电压或电流)	SB CM01	2W	不需要
F7 288-5AE06-6AA0	模拟量 6 路输入(支持电压或电流)	SB CM01	2W	不需要
F7 288-5AQ01-0AA0	模拟量1路输出(支持电压或电流)	SB AQ01	2W	不需要
F7 288-5AQ01-6AA0	模拟量1路输出(支持电压和电流)	SB CM01	2W	不需要
F7 288-5AQ02-6AA0	模拟量 2 路输出(支持电压和电流)	SB CM01	2W	不需要
F7 288-5AQ04-6AA0	模拟量 4 路输出(支持电压或电流)	SB CM01	3W	需要
F7 288-5AM03-6AA0	模拟量 2 路输入(电压或电流) 1 路输出(电压和电流)	SB CM01	1W	不需要
F7 288-5AM04-6AA0	模拟量 2 路输入(电压或电流) 2 路输出(电压和电流)	SB CM01	1W	不需要
F7 288-5AM05-6AA0	模拟量 4 路输入(电压或电流) 1 路输出(电压和电流)	SB CM01	1W	不需要
F7 288-5AM06-6AA0	模拟量 4 路输入(电压或电流) 2 路输出(电压或电流)	SB CM01	2W	不需要
温度采集信号板	描述	组态方式	功耗	24V 供电
F7 288-5AR02-6AA0	温度采集 2 路 RTD(支持 3 线制或者 2 线制传感器)	SB CM01	2W	不需要
F7 288-5AR04-6AA0	温度采集 4 路 RTD 热电阻(仅支持 2 线制)	SB CM01	2.5W	不需要

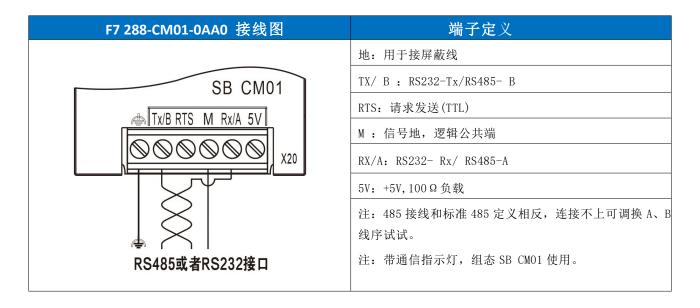
F7 288-5AT04-6AA0	温度采集 4 路 RTC 热电偶	SB CM01	2.5W	不需要
F7 288-5AN04-6AA0	温度采集 4 路 NTC 热电阻(10K,3950)	SB CM01	2W	不需要
F7 288-5AN06-6AA0	温度采集 4 路 NTC(10K, 3950)2 输入(仅支持电流)	SB CM01	2.5W	不需要
称重信号板	描述	组态方式	功耗	24V 供电
F7 288-5AW01-6AA0	1路称重感器输入(支持4线制或者6线制称重传感器)	SB CM01	2W	不需要

6. 寄存器映射关系

模拟量通道地址	描述	举例说明
IW600	输入通道 0 的采集值	tolder.
IW602	输入通道 1 的采集值	例如: 使用的是 SB AM06 信号板,模拟量采集值依次存放在
IW604	输入通道 2 的采集值	IW600、IW602、IW604、IW606中。如果采集值是 27648,表示
IW606	输入通道 3 的采集值	输入了 10V 或者 20mA。
IW608	输入通道 4 的采集值	给 QW600 赋值 27648, 模拟量输出 1 通道即可输出 10V 或
IW610	输入通道 5 的采集值	20mA。给 QW602 赋值 13824,模拟量输出 2 通道即可输出 5V 或 10mA。
QW600	输出通道 0 的设定值	例如:
QW602	输出通道 1 的设定值	使用的是 SB AR02 信号板,温度采集值依次存放在 IW600 、
QW604	输出通道 2 的设定值	IW602 中,比如采集值为 123,表示当前温度 12.3 度,采集值
QW606	输出通道 3 的设定值	放大 10 倍。

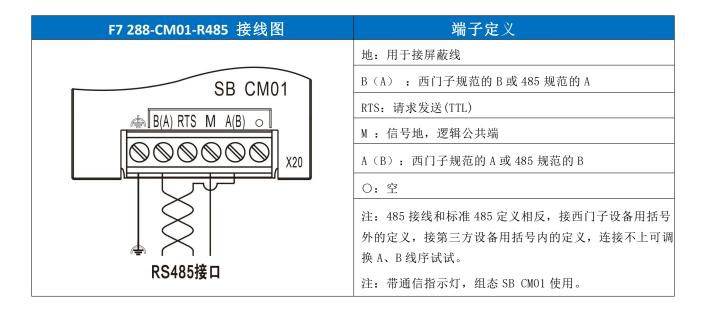
数字量通道地址	描述	举例说明
I600.0 I600.1 I600.2 I600.3 I600.4 I600.5 Q600.0 Q600.1 Q600.2 Q600.3 Q600.4 Q600.5	输入通道 0 输入通道 1 输入通道 2 输入通道 3 输入通道 4 输入通道 5 输出通道 0 输出通道 1 输出通道 1 输出通道 2 输出通道 3 输出通道 3 输出通道 3 输出通道 3	例如: 使用的是 SB DE02,输入信号依次映射在 I600.0、I600.1 中。如果值为 1,表示有数字量输入信号。 例如: 使用的是 SB QT04,输出信号映射在 Q600.0、Q600.1、Q600.2、Q600.3 中,给 Q600.2 赋值 1,数字量输出 3 通道将输出 24V。

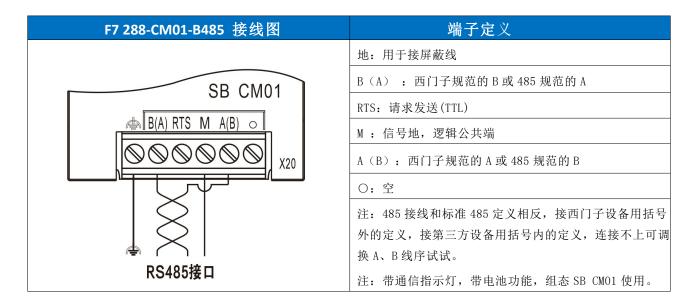

IB620/I620.0	特殊寄存器,模块的心跳值0和1每秒钟变化一次,可以判断通讯状态
IB621 — IB626	特殊寄存器,为通道0到通道5提供报警和诊断错误标志,程序可查。
QW621 — QW626	特殊寄存器,为模块的设配置寄存器,无特殊要求可以使用默认配置,无需设置;

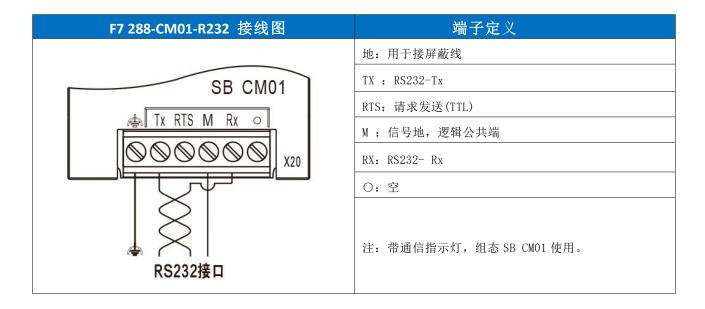

护 提示:线路板背后印有映射寄存器起始地址,可快速查看。

7. 指示灯说明

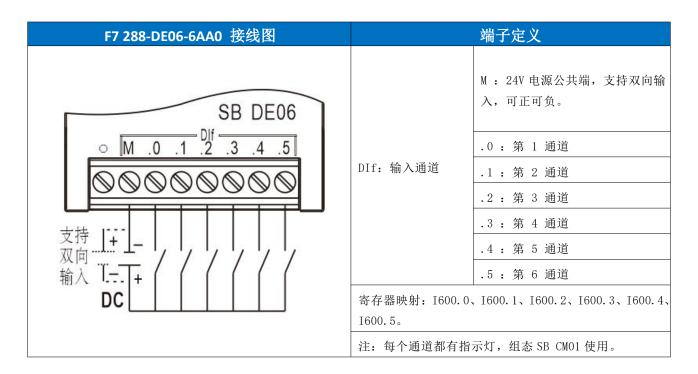
DIAG 指示灯状态	说明
绿灯长亮	工作正常。
绿灯闪烁	SB 信号板与 PLC 通信异常,请确保组态站号为"CM01"地址为"2"。
红灯闪烁	输入或输出信号超限,或传感器存在断路。
不亮	SB 板没有插好,或者 SB 板故障,请联系售后。

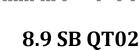

8.1 SB CM01


8.2 SB CM01-i485



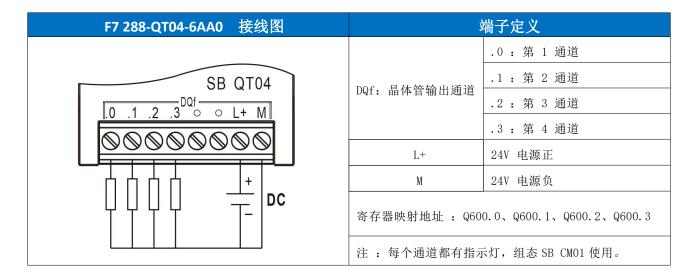
8.4 SB CM01-B485

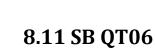

8.6 SB DE02


F7 288-DE02-0AA0 接线图		端子定义
SB DE02 o o lo o o o o o o o o o o o o o o o o	DIf: 输入通道	.0:第1通道 .1:第2通道 M:24V电源公共端,支持双向输入,可正可负。
支持	寄存器映射: I7.0、I	7. 1
双向 ———DC24V 输入 ———————————————————————————————	注:每个通道都有指定	示灯,组态 SB DT04 使用。

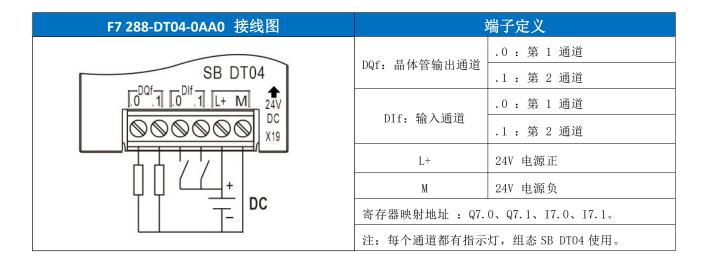
8.7 SB DE04

F7 288-DE04-6AA0 接线图		端子定义
SB DE04	DIf: 输入通道	M: 24V 电源公共端, 支持双向输入, 可正可负。 .0: 第 1 通道 .1: 第 2 通道 .2: 第 3 通道 .3: 第 4 通道
输入	寄存器映射: I600.0	. 1600.1, 1600.2, 1600.3
	注:每个通道都有指:	示灯,组态 SB CM01 使用


8.8 SB DE06

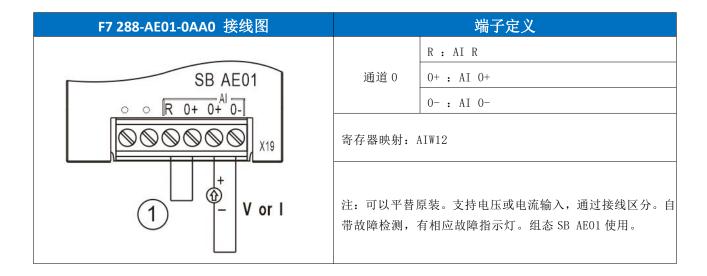


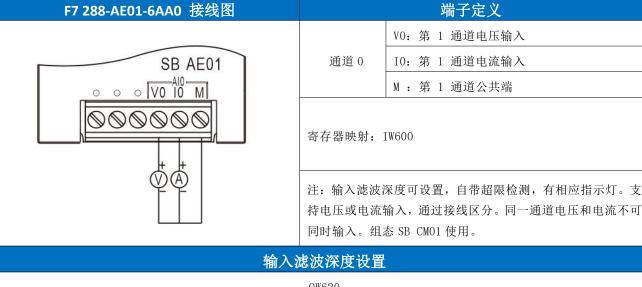
F7 288-QT02-0AA0 接线图	;	端子定义
		.0:第1通道
SB QT02	DQf: 晶体管输出通道	.1:第2通道
[.0 .1] [L+ M] 24V	L+	24V 电源正
	M	24V 电源负
	寄存器映射: Q7.0、Q7	.1.
DC24V	注:每个通道都有指示	灯,组态 SB DT04 使用。


8.10 SB QT04

F7 288-QT06-6AA0 接线图		端子定义
		.0 : 第 1 通道
OR OTOO		.1 : 第 2 通道
SB QT06	DOC 目体熔於山海送	.2:第3通道
0 .1 .2 .3 .4 .5 L+ M	DQf: 晶体管输出通道	.3:第4通道
<u> </u>		.4:第5通道
9999999		.5: 第 6 通道
	L+	24V 电源正
 DC	M	24V 电源负
T T T T T T -	寄存器映射地址: Q60	0.0, Q600.1, Q600.2, Q600.3,
	Q600.4、Q600.5。	
	注:每个通道都有指示	灯,组态 SB CM01 使用。

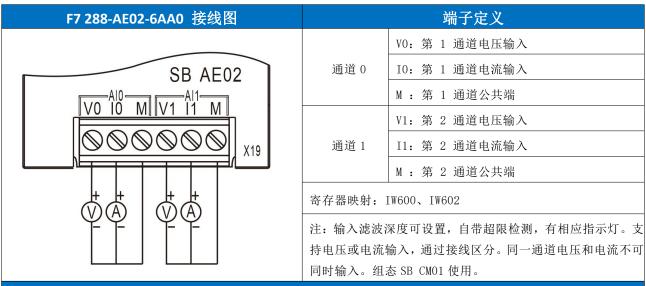
8.12 SB DT04




8.13 SB DT06

F7 288-DT06-6AA0 接线图	端	子定义
	DOC 日体体标业区	.0:第1通道
	DQf: 晶体管输出通道	.1 : 第 2 通道
SB DT06		.0:第1通道
	DIf: 输入通道	.1 : 第 2 通道
	DII: 潮八旭坦	.2 : 第 3 通道
00000000		.3 : 第 4 通道
	L+	24V 电源正
<u> </u>	M	24V 电源负
TT	寄存器映射地址: Q600.0、	, Q600. 1, I600. 0, I600. 1, I600. 2,
	1600.3.	
	注:每个通道都有指示灯,	组态 SB CM01 使用。

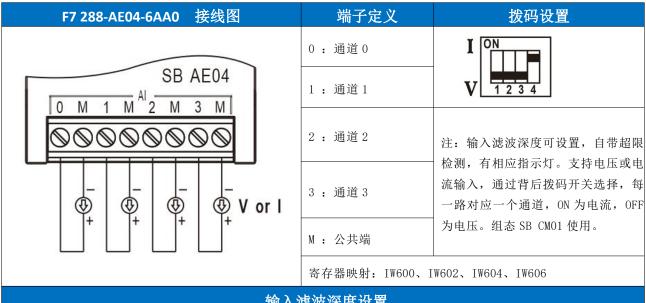
8.14 SB AE01



QW620 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 预留 预留 预留 通道 0 代码 含义 举例说明 编程示例 0 1个周期 如要将通道0的滤波周期设置为 Always_On MOV_W 1 4个周期 ENO EN 32 个周期, 就可以将 QW620 的低 4 2 16 个周期 位设置为3,如右图所示: 16#03-IN OUT - QW620 32 个周期

注: 对滤波深度无要求的应用,可以忽略此项设置;

	<u> </u>													
/조 / 샤	⇔≠: ==				寄存	字器 2 进制表	表示							
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
输入通道 0	I621		预	留		超上限	超下限		预留					

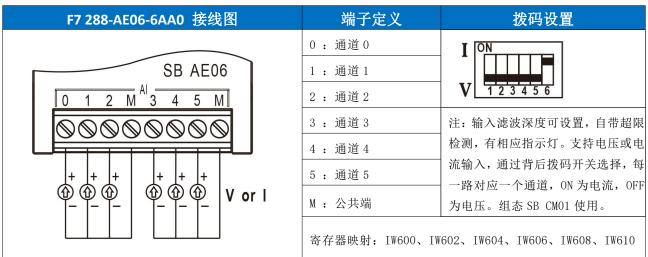

输入滤波深度设置 QW620 Bit15 | Bit14 | Bit13 | Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 预留 预留 通道1 通道0 含义 举例说明 代码 编程示例 0 1个周期 如要将通道0的滤波周期设置为 Always_On 1 4个周期 32 个周期,将通道1的滤波周期 ENO 设置为16个周期,就可以将QW620 2 16 个周期 16#23-IN <u>OUT</u> QW620 设置为16#23,如右图所示: 32 个周期 3

注: 对滤波深度无要求的应用,可以忽略此项设置;

警告标志													
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
输入通道 0 I621													
		Į a	·	超上限	超下限		预留						
	Bit7	7	Bit7 Bit6 Bit5	寄存 Bit7 Bit6 Bit5 Bit4 预留	寄存器 2 进制表 Bit7 Bit6 Bit5 Bit4 Bit3 预留 超上限	寄存器 2 进制表示 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 预留 超上限 超下限	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 预留 超上限 超下限						

.....

输入滤波深度设置

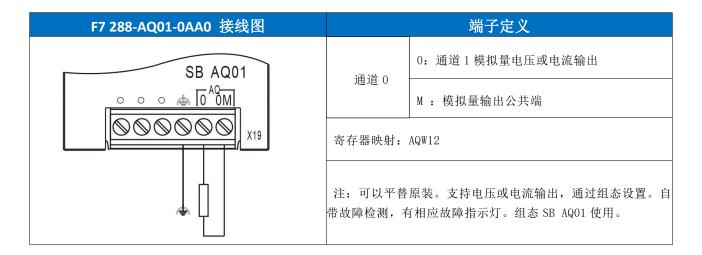

OW620

							6	W620							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	通	道 3			通	道 1				通道	<u>†</u> 0				
代码	代码 含义 举例说明											绯	扁程示值	列	
0		1 个周	期	如要	如要将通道0的滤波周期设置为							00000			
1	4 个周期 32 个周期,将通过								35	Alwa	ys_On L	EN	MOV.	_W ENC	
2	16 个周期 设置为 16 个周期,其他通道设置为 16 个周期,其他通道设置为 4 周期就可以将 QW620 设置为									1	1	1500		7.000	
3		32 个周	5期		同朔就・ 123, 如			以且力			16#11	23 - IN		001	_QW620

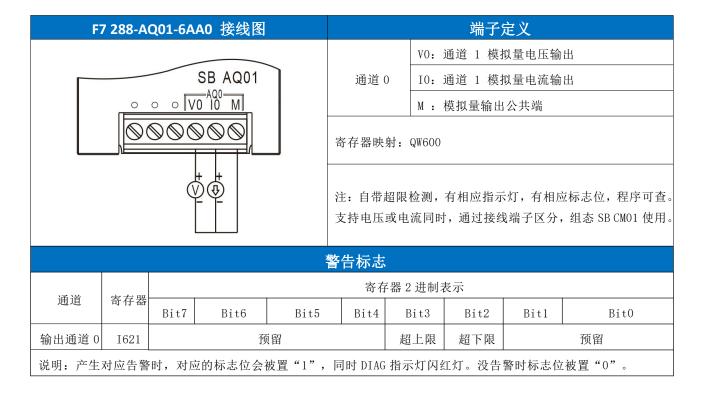
注: 对滤波深度无要求的应用,可以忽略此项设置;

	警告标志 													
'安 <i>"</i> 异	安去吧		寄存器 2 进制表示											
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 Bit0						
输入通道0	I621		预	i留		超上限	超下限		预留					
输入通道1	1622		预	i留		超上限	超下限	预留						
输入通道 2	1623		预	i 留		超上限	超下限		预留					
输入通道3	I624		预	i留		超上限	超下限		预留					

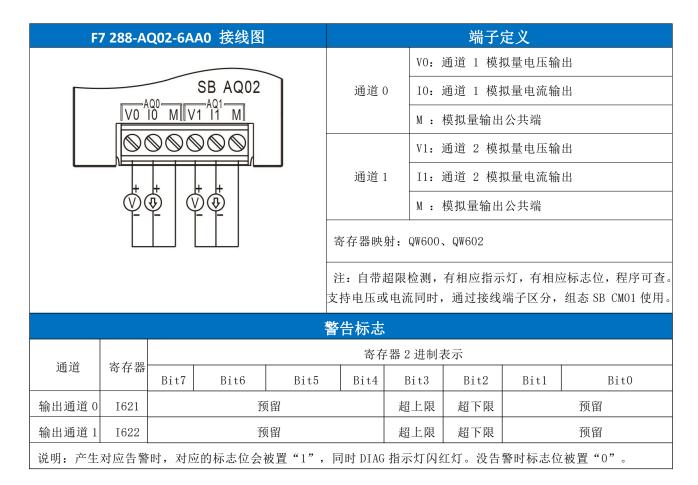
8.18 SB AE06



						输	入滤	皮深度	E 设置						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
通道 3 通道 2								通	道 1				通道	<u>†</u> 0	
QW622															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
预留 预留							通道 5 通道 4					Í 4			
代码	1	含义	L		举例说明					编程示例					
0		1 个周	期	如要	如要将通道0的滤波周期设置为								100900	V_W	SE
1		4 个周	期		周期,		⊣ ⊢		16#112	EN	ENO -	—)			
2 16 个周期 设置为 16 个周期,其他通道设置 2 16 个周期 为 4 周期就可以收 0W620 公署											10#112	NIIF C	- 001 F 1	₫ M O Z O	
为 4 周期就可以将 QW620 设置 16#1123,将 QW622 设置为 16												EN MO	V_W ENO	 	
3		32 个周	 判		图所示:							16#1	1 - <u>IN</u>	OUT	QW622

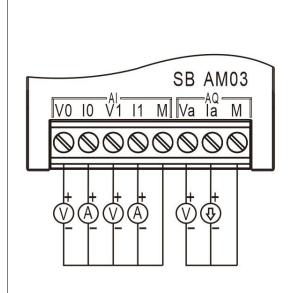

注:对滤波深度无要求的应用,可以忽略此项设置;

	警告标志													
7岁7呆	安去吧		寄存器 2 进制表示											
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
输入通道 0 I621 预留 超上限 超下限 预留														
输入通道1	输入通道 1 I622 预留 超上限 超下限 预留													
输入通道 2	输入通道 2 I623													
输入通道 3 I624														
输入通道 4 I625														
输入通道 5 I626														
说明:产生	对应告警	时,对区	拉的标志位会	被置"1",同	时 DIAG	指示灯闪红	灯。没告	警时标志位	拉被置"0"。					



8.20 SB AQ01-6AA0

.....



F7 288-AQ04-6AA0 接线图 端子定义 0:模拟量输出通道0 SB AQ04 1:模拟量输出通道1 2: 模拟量输出通道2 3: 模拟量输出通道3 M: 模拟量输出公共端 L+: 供电 24V 电源正 V or I M: 供电 24V 电源负 寄存器映射: QW600、QW602、QW604、 QW606。 注: 自带超限检测,有相应指示灯,有相应标志位,程序可查。 支持电压或电流输出,通过背后拨码开关设置。组态 SB CM01 使 用。 定义 SB AQ04 拨码 1: ON 、2: OFF 输出 1 通道电压 注意: 1、2 不能同时 ON ON 1: OFF 、2: ON 输出 1 通道电流 3: ON 、4: OFF 输出 2 通道电压 注意: 3、4 不能同时 ON 3: OFF 、4: ON 输出 2 通道电流 5: ON 、6: OFF 输出 3 通道电压 注意: 5、6 不能同时 ON 5: OFF 、6: ON 输出 3 通道电流 7: ON 、8: OFF 输出 4 通道电压 注意: 7、8 不能同时 ON 7: OFF 、8: ON 输出 4 通道电流 警告标志 寄存器 2 进制表示 通道 寄存器 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 输出通道 0 I621 预留 超上限 超下限 预留 输出通道1 1622 预留 超上限 超下限 预留 输出通道2 I623 预留 超上限 超下限 预留 I624 输出通道3 预留 超上限 超下限 预留 说明:产生对应告警时,对应的标志位会被置"1",同时DIAG指示灯闪红灯。没告警时标志位被置"0"。

8.23 SB AM03

.....

F7 288-AM03-6AA0 接线图

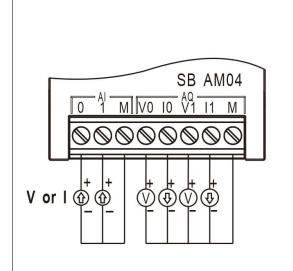
V0: 通道 0 电压输入端 I0: 通道 0 电流输入端 V1: 通道 1 电压输入端 I1: 通道 1 电流输入端
模拟量输入 V1: 通道1电压输入端
VI: 应是I 电压制八洲
I1: 通道1电流输入端
AQ Va: 通道 0 电压输出端
模拟量输出 Ia: 通道 0 电流输出端

M : 公共端

寄存器映射: IW600、IW602、QW600

注:模拟量输入滤波深度可设置,支持电压或者电流,通过接线端子区分,同一通道电压和电流不可同时输入。模拟量输出支持电压和电流同时输出,通过接线端子区分。输入输出都带超限检测,有相应指示灯,有相应标志位,程序可查。组态 SB CM01 使用。

输入滤波深度设置


	QW620															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	预留 预留									道1				通道	0	
代码	1	含义				举例说	明			编程示例						
0		1 个周	期	加重松	∡通滑 U	的滤源	居相	公署 为	32							
1		4 个周	期	// 如要将通道 0 的滤波周期设置为 3: //						Alwa ——	ays_On 	EN	MOV_W	ENO —	—	
2		16 个周期 为 16 个周期, 就可以将 QW620 设							:置	i i	10#3	23-IN		оит - а	VI VVC20	
3 32 个周期 为 16#23, 如右图所示:									10#2	NIIP	:1	<u>001</u> FQ	W 020			

注: 对滤波深度无要求的应用,可以忽略此项设置;

ABPY	~	-	_
	_	All a local	_

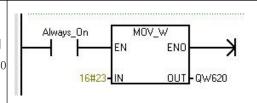
73.77	<i>→</i> + nn		寄存器 2 进制表示									
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
输入通道 0	I621		预	留		超上限	超下限	预留				
输入通道1	1622		预	留		超上限	超下限	预留				
输出通道 0	1623		预	留		超上限	超下限		预留			

8.24 SB AM04

F7 288-AM04-6AA0 接线图

站	岩子定义	拨码设置
	0:通道0	ION
AI 模拟量输入	1:通道1	V 12
	M : 公共端	¥
	VO: 通道 0 电压输出	
	I0: 通道 0 电流输出	
AQ	V1: 通道1电压输出	
模拟量输出	I1: 通道1电流输出	
	M : 公共端	

寄存器映射: IW600、IW602、QW600、QW602

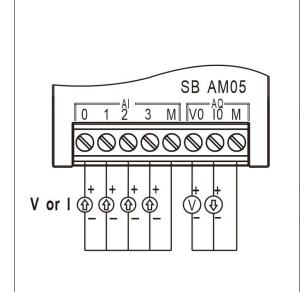

注:模拟量输入滤波深度可设置,支持电压或者电流,通过背后拨码开关选择,每一路对应一个通道,ON为电流,OFF为电压。模拟量输出支持电压和电流同时输出,通过接线端子区分。输入输出都带超限检测,有相应指示灯,有相应标志位,程序可查。组态 SB CM01 使用。

输入滤波深度设置

QW620

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit(
预留					预	留			通	道 1				通道	Í 0

代码	含义	举例说明
0	1 个周期	如要将通道0的滤波周期设置为
1	4个周期	32 个周期,将通道1的滤波周期
2	16 个周期	设置为16个周期,就可以将QW620
3	32 个周期	设置为 16#23, 如右图所示:



编程示例

注: 对滤波深度无要求的应用,可以忽略此项设置;

				警	告标志							
'医'关	<i>⇔+</i> : □□		寄存器 2 进制表示									
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
输入通道 0	I621		刊	 留		超上限	超下限	预留				
输入通道1	1622		刊	 留		超上限	超下限		预留			
输出通道 0	1623		刊	質留		超上限	超下限	预留				
输出通道1	1624		五	页 留		超上限	超下限		预留			

8.25 SB AM05

F7 288-AM05-6AA0 接线图

端子	定义	拨码设置
	0:通道0	
AI	1:通道1	I ON
	2:通道2	V 1234
模拟量输入	3:通道3	
	M : 公共端	
AQ	VO: 电压输出端	
-	I0: 电流输出端	
模拟量输出	M : 公共端	

寄存器映射: IW600、IW602、IW604、 IW606、QW600

注:模拟量输入滤波深度可设置,支持电压或者电流,通过背后拨码开关选择,每一路对应一个通道, ON 为电流,OFF 为电压。模拟量输出支持电压和电流同时输出,通过接线端子区分。输入输出都带超限检测,有相应指示灯,有相应标志位,程序可查。组态 SB CM01 使用。

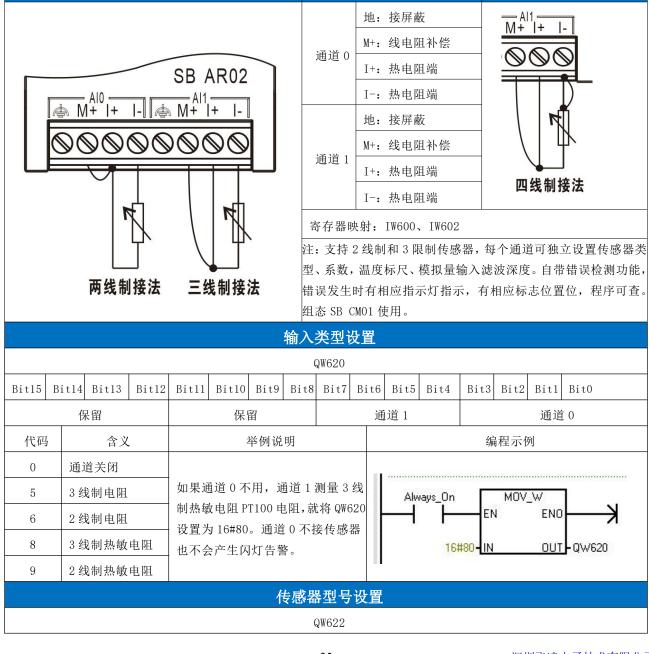
输入滤波深度设置 QW620 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 通道 3 通道 2 通道1 通道 0 举例说明 代码 含义 编程示例 如要将通道0的滤波周期设置为32 1个周期 Always_On MOV_W 个周期,将通道1的滤波周期设置 1 4个周期 ENO EN 为16个周期,其他通道设置为4周 2 16 个周期 期就可以将 QW620 设置为 16#1123, OUT QW620 16#1123-IN 3 32 个周期 如右图所示:

注: 对滤波深度无要求的应用,可以忽略此项设置;

警告标志												
(圣)关	安士皿		寄存器 2 进制表示									
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
输入通道0	I621		预	留		超上限	超下限	预留				
输入通道1	I622		预	留		超上限	超下限	预留				
输入通道2	1623		预	留		超上限	超下限		预留			
输入通道3	I624			留	·	超上限	超下限	预留				
输出通道 0	I625			印		超上限	超下限		预留			

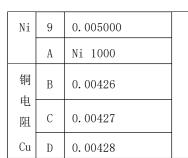
8.26 SB AM06

F7 288-AM06-6AA	 0 接线图		端子定义					
			0:通道0					
			1:通道1					
		AI	2:通道2					
	SB AM06	模拟量输入	3:通道3					
0 1 2 3 M	0 1 M		M : 公共端					
		AQ	0:通道0					
	<u>@@@</u>	模拟量输出	1:通道1					
		7007.111	M : 公共端					
	占 占		000、IW602、IW604、IW606					
₩ ⊕ ⊕ ⊕ V or I - - - -	∐ V or I	AQ 寄存器映射: QW6						
	771		按深度可设置,支持电压或者电流,通,每一路对应一个通道,0N为电流,					
			, 母					
			R检测,有相应指示灯,有相应标志位,					
		程序可查。组态 SB (MO1 使用。					
SB AM06 拨码		定义						
	1: 通道 1 模拟输	入端, ON: 电流; OFF:	电压					
	2: 通道 2 模拟输	入端, ON: 电流; OFF:	电压					
	3: 通道 3 模拟输	莫拟输入端, ON: 电流; OFF: 电压						
ON	4: 通道 4 模拟输	入端, ON: 电流; OFF:	电压					
	5: ON、6: OFF 输	Y						
1 2 3 4 5 6 7 8	5: OFF、6: ON 输	注意: 5、6 不能 : OFF、6: ON 输出 1 通道电流						
	7: ON、8: OFF 输	出 2 通道电压	Vit 5 0 TAKERIN ON					
	7: OFF、8: ON 输	注意: 7、8 不能同时为(
		皮深度设置						
		W620						
Bit15 Bit14 Bit13 Bit12 Bit		Bit7 Bit6 Bit5 Bi	4 Bit3 Bit2 Bit1 Bit0					
通道 3	通道 2	通道 1	通道 0					
代码 含义								
		い 岩 生	7世7土4、12月					
200	要将通道 0 的滤波周期 个周期,将通道 1 的滤	82 22	n MOV_W					
设	置为 16 个周期,其他通	**************************************	EN ENO					
1 2 1 16 个周期 1 1	4周期就可以将 QW620	ル曲子	#1123-IN OUT-QW620					
3 32 个周期 16	#1123, 如右图所示:		<u></u> <u></u> <u></u> qnozo					
注:对滤波深度无要求的应用,可	可以忽略此项设置;							
	数 <u>数</u>	 告标志						
通道 寄存器		寄存器 2 进制表示						


四线制接法

		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
输入通道 0	I621		预	留		超上限	超下限	预留		
输入通道1	I622		预	留		超上限	超下限	预留		
输入通道 2	1623		预	留		超上限	超下限	预留		
输入通道3	I624		预	留		超上限	超下限		预留	
输出通道 0	1625		预	留		超上限	超下限		预留	
输出通道1	1625		预	超上限	超下限		预留			
说明:产生对应告警时,对应的标志位会被置"1",同时 DIAG 指示灯闪红灯。没告警时标志位被置"0"。										

端子定义


8.27 SB AR02

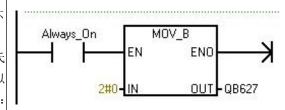
F7 288-AR02-6AA0 接线图

Bitl	15 B	it14 Bit13 B	it12	Bit11	Bit10	Bit9	Bit8	Bit7 B	it6 Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		保留			保旨	留			通道 1				通道	į 0	
代	码	含义			ä	举例说	明		编程示例						
	0	48 欧姆													
	1	150 欧姆													
电阻阻	2	300 欧姆													
PEL	3	600 欧姆													
	4	3000 欧姆													
	0	PT 10													
	1	PT 50		/61	thi Lo	waaa 4	6) n	13.14 o							
	2	PT 100						,通道 0 便设置为							
	3	PT 200						,这里从	. Al.		-	МО	V Vic	-	
	4	PT 500						0 对应的		vays_On —	8	MU N	V_W EI	NO	\leftarrow
	5	PT 1000						可以设置							
热	6	Ni 100			20,如				16#20- <mark>IN OU</mark>				UT QV	/622	
敏电	7	Ni 120						测量的阻 :程代码。							
阻	8	Ni 200		п у нт III.,	22,177	1 \\\ H 1	.Chr. ==	7177 1 1 4 2 0							
	9	Ni 500													
	A	Ni 1000													
	В	Cu 10													
	С	Cu 50													
	D	Cu 100													
	Е	LG-Ni 1000													
						作	专感 器	紧 系数设	置						
							(QW622							
Bitl	15 B		it12	Bit11	Bit10	Bit9	Bit8	Bit7 B	it6 Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		保留			保日	翌			通道1				通道	0	
代	码	含义			Ž	举例说	明				绵	a 程示例	ή		
la ta	0	0.00385055													
铂电	1	0.003916		继 QW6	22 的设	置,追	通道 0 :	关闭,所	\$ 1 2000000	000000000000000000000000000000000000000	190331190	M. 186.881	NGC 283 1179		10000011000
阻	2	0.003902						代码可以	Δli	ways_Or	Г	MO	V_W	7	
PT	3	0. 003920						100,如	D, 如					k	
	5	0. 003910						55″,则 此就可以						/624	
镍	6	0.006170						百图所示:						a Cro dici	
电阳	7	0. 006720													
阻	8	0.006180													

强(32个周期)

滤波深度设置

					QB626						
Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
保留				保留	ù	通道 1	道1 通道0				
代码 含义				举例说明			编程示例				
0	0	无(1个周期)	继 QW624	的设置,通道	0 关闭,不	I					
0	1	弱(4个周期)		以设为"00"			On MO	V_B ENO			
1	0	中(16个周期)		置为强(32个			EIN	ENO			
	_	38 (00 A FE ##)	直为"Ⅱ	"; 因此就可	以将 QB026	2	#1100-IN	OUT - QB626			

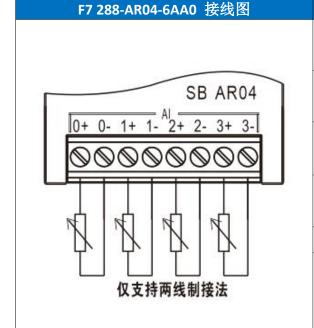

温度单位设置

设置成 2#1100, 如右图所示:

OB627

				WD071			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	保留			保留	保留	通道 1	通道 0

代码	含义	举例说明
0	摄氏温度	继 QB626 的设置,通道 0 关闭,不 涉及温度单位设置,可以设置为
1	华氏温度	"0",如通道1的温度单位为摄氏温度,就设置为"0",因此就可以将QB627设置成2#00,如右图所示:


编程示例

注: 当配置参数寄存器 QW620-QW627 都为 0 时为默认参数配置: 所有通道开启, 传感器为 3 线制 PT100/0.00385055, 无滤波,温度单位为摄氏温度。如默认参数能满足应用要求,则无需对以上寄存器进行配置。

警告标志

	H H W.O.														
/玄 /六	<i>→+</i> : ••		寄存器 2 进制表示												
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
输入通道 0	I621		预	留		超上限	超下限	断线	预留						
输入通道1	1622		预	留		超上限	超下限	断线	预留						

8.28 SB AR04

	端子定义
次 法 o	0+ : 热电阻端
通道 0	0- : 热电阻端
/玄 / 4	1+: 热电阻端
通道 1	1-: 热电阻端
12.1%	2+ : 热电阻端
通道 2	2-: 热电阻端
12.14 a	3+ : 热电阻端
通道 3	3- : 热电阻端

寄存器映射: IW600、IW602、IW604、IW606

注:支持2线制传感器,每个通道可独立设置传感器类型、系数,温度标尺、模拟量输入滤波深度。自带错误检测功能,错误发生时有相应指示灯指示,有相应标志位置位,程序可查。组态SBCM01使用。

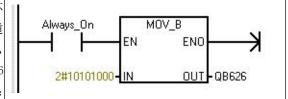
输入类型设置

QW620

	QW620														
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
通道 3 通道 2								通	通道1 通道0						
代码 含义 举例说明									编程示例						
0	通	道关闭		如果:	通道 0 7	不用,	其他通	道测量							
0 2 线耐电阻						效电阻 PT100 电阻,就将 ┃ ┃					vs_On 	EN MO	V_W ENC	<u> </u>	K
9	2 叁	 長制热敏		QW620 设置为 16#9990。通道 0 不接传感器也不会产生闪灯告警。						16#9990	IN	001	QW62	0	

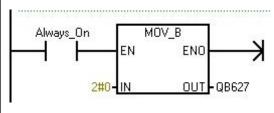
传感器型号设置

QW622


								(77001									
Bit	l5 Bi	t14 Bit	13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	通道 3					通道 2						通道 1 通道 0						
什	[码		含义			举例说明						编程示例						
	0	48 欧姆	ł			继以上	QW620	的设置	i,通ji	道 0								
	1	150 欧梦	母		不用	,这里的	这里的型号可以随便设置为											
电阻阻	电 2 300 欧姆					0, 其他通道测量热敏电阻, 这里												
PET	3	600 欧梦	母								\dashv	H	H	N	EN	K— □		
	4 3000 欧姆					应的代码 "2"; 所以 QW622 就可以设置为 16#2220, 如右图所示:						16#2	2220-11	N	OL	JT - QW622		
热	0	PT 10			如	测量电	阻,贝	根据	被测量	的			encopie.		55000			
敏	1	PT 50			阻值,	选择对	应的电	阻量	程代码	0								

电	2	PT 100											
阻	3	PT 200											
	4	PT 500											
	5	PT 1000											
	6	Ni 100											
	7	Ni 120											
	8	Ni 200											
	9	Ni 500											
	A	Ni 1000											
	В	Cu 10											
	С	Cu 50											
	D	Cu 100											
	Е	LG-Ni 1000											
				传	感器	系数	设置						
					G	W622							
Bitl	5 B	it14 Bit13 Bit12	Bit11 Bit	10 Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 Bit0	
		保留	1	保留			通	道道 1		通道 0			
代	码	含义	举例说明							编	程示例	์ ป	
	0	0.00385055											
铂	1	0. 003916											
电阻阻	2	0. 003902											
PT	3	0. 003920											
	5	0.003910		622 的设置				-					
	6	0. 006170	所有不涉》 以随意设置				8.1	1997 19 p					
镍电	7	0. 006720	如果温度				81	\dashv	H		N	ENO	
阻	8	0.006180	则对应代码	冯设置为'	"0",	因此	就		4	6#0 - IN	J	OUT - QW624	
Ni	9	0. 005000	可以将QW	624 设置反	戈 16#	0, 如7	i			0#0 111		001 QW024	
	A	Ni 1000	图所示:										
铜	В	0. 00426											
电阻阻	С	0. 00427											
Cu	D	0. 00428											
					虑波	深度 と	置						
					()B626							
	Bit7	Bit6	Bit5	Bit4		Bit3		Bit	2	Bit	1	Bit0	
		通道 3	通道 2 通				通道 1 通道 0						
代	码	含义	举例说明				编程示例						

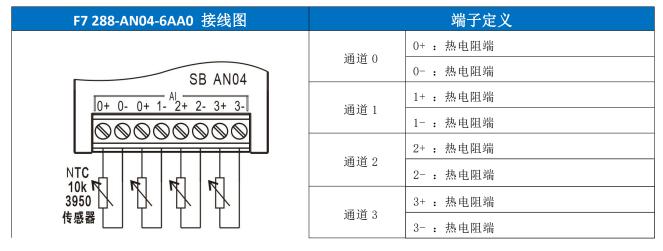
..........


继 QW624 的设置,通道 0 关闭,不 涉及,可以设为"00";其他通道 的的滤波设置为强(16 个周期), 设置为"10";因此就可以将 QB626 设置成 2#10101000,如右图所示:

温度单位设置

	QB627													
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0														
	伢	R留		通道 3	通道 2	通道 1	通道 0							

代码	含义	举例说明
0	摄氏温度	继 QB626 的设置,通道 0 关闭,不 涉及温度单位设置,可以设置为 "0",如其他通道的温度单位为
1	华氏温度	摄氏温度,就设置为"0",因此就可以将 QB627 设置成 2#0000,如右图所示:


编程示例

注: 当配置参数寄存器 QW620-QW627 都为 0 时为默认参数配置: 所有通道开启, 传感器为 2 限制 PT100/0.00385055, 无滤波, 温度单位为摄氏温度。如默认参数能满足应用要求,则无需对以上寄存器进行配置。

	警告标志														
/圣 /关	<i>→</i> + nn		寄存器 2 进制表示												
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
输入通道 0	I621		预	留		超上限	超下限	断线	预留						
输入通道1	1622		预	留		超上限	超下限	断线	预留						
输入通道2	1623	-		留		超上限	超下限	断线	预留						
输入通道3	I624		·····································	留		超上限	超下限	断线	预留						

说明:产生对应告警时,对应的标志位会被置"1",同时 DIAG 指示灯闪红灯。没告警时标志位被置"0"。

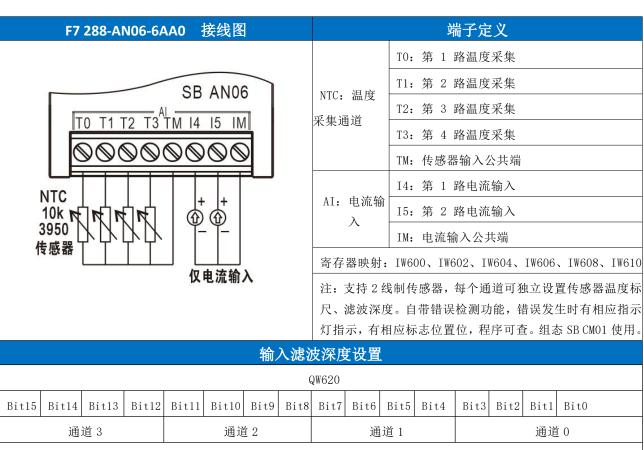
8.29 SB AN04

寄存器映射: IW600、IW602、IW604、IW606

注:支持2线制传感器,每个通道可独立设置传感器温度标尺、滤波深度。自带错误检测功能,错误发生时有相应指示灯指示,有相应标志位置位,程序可查。组态SBCM01使用。

输入滤波深度设置 QW620 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 通道3 通道 2 通道1 通道 0 代码 含义 举例说明 编程示例 0 通道关闭 1个周期 如要将通道0关闭,通道1的滤波 MOV_W Always_On 2 4个周期 周期设置为16个周期,其他通道设 EN 3 16 个周期 置为32个周期,就可以将QW620设 16#4430-IN OUT - QW620 置为 19#4430, 如右图所示: 4 32 个周期

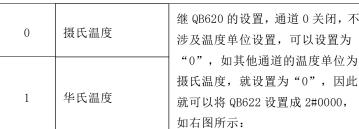
注:对滤波深度无要求的应用,可以忽略此项设置;

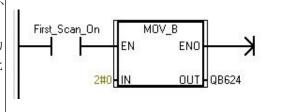

温度单位设置 QB622 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 通道 3 通道 2 通道 0 保留 通道 1 举例说明 代码 含义 编程示例 继 QB620 的设置,通道 0 关闭,不 0 摄氏温度 涉及温度单位设置,可以设置为 MOV_B Always_On "0",如其他通道的温度单位为摄 EN **ENO** 氏温度,就设置为"0",因此就可 2#0-IN OUT QB622 以将 QB622 设置成 2#0000, 如右图 1 华氏温度 所示:

注: 当配置参数寄存器 QW620-QW620 都为 0 时为默认参数配置: 所有通道开启,滤波深度为 1 个周期,温度单位为摄氏温度。如默认参数能满足应用要求,则无需对以上寄存器进行配置。

\Z \Y	寄存器				寄存	器 2 进制表	表示							
通道		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
输入通道 0	I621		预	页 留		超上限	超下限	断线	预留					
输入通道1	1622		预	页 留		超上限	超下限	断线	预留					
输入通道2	1623		预	页 留		超上限	超下限	断线	预留					
输入通道3	I624			断线	预留									
柳八旭坦 3	1024		超上限											

8.30 SB AN06

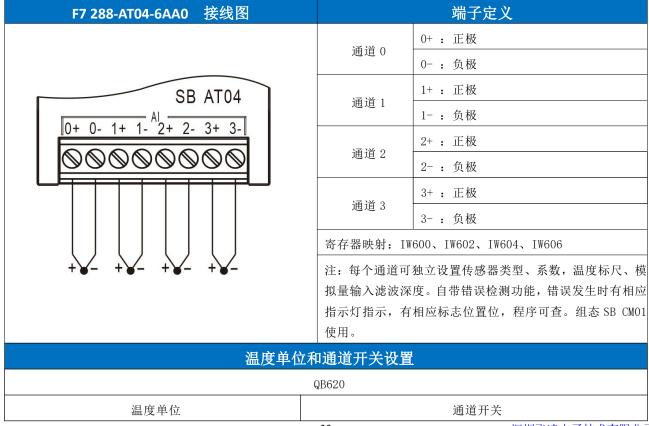

.....



	输入滤波深度设置														
	QW620														
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	通道 3 通道 2									通道 1 通道 0					<u> </u>
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
保留保留									通	通道 5 通道 4					<u>†</u> 4
代码	3	含义	L			举例说	明			编程示例					
0		通道決													
1		1 个周	期	如要	将通道	0 的滤	波周期	设置	与	Always_0)n		1011100	V_W	N
2		4 个周	期		周期,					—		16#223	EN M4 IN	ENO	QW620
3												, 0,1220		3311	9. 11. 10. 10. 10. 10. 10. 10. 10. 10. 10
为 4 周期就可以将 QW620 设置为 16#2234,将 QW622 设置为 16#22 如右图所示:										16#2	EN 22-IN	V_W ENO - OUT -	K		

注: 对滤波深度无要求的应用,可以忽略此项设置;

	温度单位设置								
	QB622								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	保	留		通道 3	通道 2	通道1	通道 0		
代码 含义 举例说明 编程示例									



注: 当配置参数寄存器 QW620-QW620 都为 0 时为默认参数配置: 所有通道开启,滤波深度为 1 个周期,温度单位为摄氏温度。如默认参数能满足应用要求,则无需对以上寄存器进行配置。

'医', 法	安士田				寄有	字器 2 进制表示					
通道	寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
输入通道0	I621		预	留		超上限	超下限	断线	预留		
输入通道1	1622		预	留		超上限	超下限	断线	预留		
输入通道2	1623		予	留		超上限	超下限	断线	预留		
输入通道3	I624		预	留		超上限	超下限	断线	预留		
输入通道 4	1625		预	留		超上限	超下限	预留	预留		
输入通道 5	1626		预	留		超上限	超下限	预留	预留		

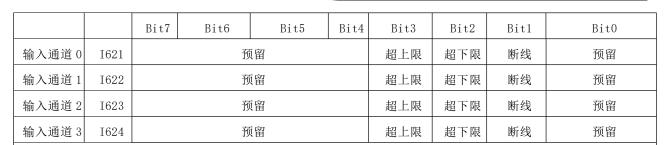
说明:产生对应告警时,对应的标志位会被置"1",同时 DIAG 指示灯闪红灯。没告警时标志位被置"0"。

8.31 SB AT04

C

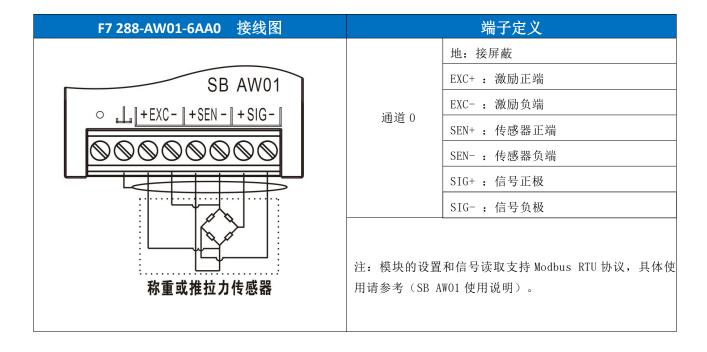
电压

=-===		•													
	Bit7		Bit6		Bit5	Bit4		Bit3		Bit2	2	Bit	1		Bit0
jį	通道 3	3	通道:	2	通道 1	通道 0		通道 3		通道	2	通道	1		通道 0
代	码		含义			举例:						對	扁程示值	例	
温度	0	摄员	·		如果通过		: 将 QB6	520的bi	t1	* I					
単位	1	华日	 氏温度		- 设置为	0,通道1	就不会	产生告誓	文 。	Alw	ays_On L	EN	MOV_B	ENO	N
通道 开关	0		可通道 可通道		通道采用	道3要显示 用摄氏温度	显示,	其他通	道		2#10001	EN 101 - <u>IN</u>		OUT-Q	B620
	1	开启	自通道			氏温度显示 10001101)		· QB620	汉 —						
					<u> </u>			型号记	子署						
						1.		W622	~. E.						
Bitl	15 D	it14	Bit13	Bit12	Bit11 B:	it10 Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DIU	го Б		<u> bitis </u> 道 3	DICIZ	DICII D.	通道 2	DI to	DICT) 道 道 1	DICT	DIU	D1 (2	通道	
/1:	\ T.						V ==			100 1			÷ 70 1		1 0
	:码		含义	-		举例记	兄明		+			3)	扁程示值	例	
()	B型			4										
]	1	N 型	Ĭ		_										
2	2	E型	Ţ												
3	3	R 型	Į												
4	1	S 型	Į		」 」如果通知	道1测量 K∶	型热电	偶,其	也	Alv	vays_Or	1.00	MOV] ,
5	5	J 型	Ĭ		通道测量	量 E 型热电	偶,就	可以将		\Box		T E	N	EN	
7	7	T 型	Ĩ		QW624 设	·置成 16#82	222,如	右图所为	r̄:		16#	8222-11	V	OU	<u>T</u> -QW622
8	3	K 型	į							ı					
A	A	C 型	Į												
	3	TXK	_XK 型												
		1							- 1						


滤波深度设置

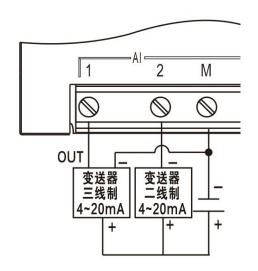
							્તુ -	W622							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
通道 3 通道 2						通道 1 通道 0					Í 0				
代码	1	含义	۷.			举例证	兑明					4	编程示	例	
0	无	(1 个周	期)	加果	要将通过	首3的:	滤波设	置为32) 个	l					_
1	弱	(4 个周	期)		, 其他 [;]					Alu	vays_On —	100	MOV N	_W ENC	
2	中	(16 个周	周期)	就将	QB626 †	没置成	16#32	22,如右	百图	'	104			0117	
3	强	(32 个周	周期)	所示	:						16#.	3222-11	И	001	 -QW624

注: 当配置参数寄存器 QW620-QW624 都为 0 时为默认参数配置: 所有通道开启, 传感器为 K 型热电偶, 无滤波, 温度 单位为摄氏温度。如默认参数能满足应用要求,则无需对以上寄存器进行配置。


	-
一直可加尔	'n

通道 寄存器 寄存器 2 进制表示

说明:产生对应告警时,对应的标志位会被置"1",同时DIAG指示灯闪红灯。没告警时标志位被置"0"。


8.32 SB AW01

F7 288-AW02-6AA0 接线图	端子定义
SB AW02 E0- E0+ S0- S0+ E1- E1+ S1- S1+	E0-: 传感器负端 E0+: 传感器正端 S0-: 信号负极 S0+: 信号正极
000000	E0-: 传感器负端 E0+: 传感器正端 S0-: 信号负极 S0+: 信号正极
称重或推拉力传感器	注:模块的设置和信号读取支持 Modbus RTU 协议,具体包用请参考(SB AW02 使用说明)。

8.34 变送器接线示意图

提示: 电流信号输入前,请将该通道拨码设置为电流输入。

特别说明:信号板拨码开关表面贴有高温贴膜,用尖锐工具(比如镊子)刺破后,轻轻拨动即可,在出厂前调试时也有可能存在切换拨码的情况,高温贴膜被刺破或丢失属正常现象。

9. 技术参数

数字量信号板	SB DE02	SB DE04	SB DE06	SB DT04	SB DT06	SB QT02	SB QT04	SB QT06		
通道数	2 入	4 入	6入	2入2出	4 入 2 出	2 出	4 出	6 出		
数字量输入类型	漏型或者	漏型或者源型(支持双向输入,公共端接正、负均可)								
	逻辑 1 最	逻辑 1 最小电压: 2.5mA 时 15VDC								
数字量输入电压	逻辑 0 最	逻辑 0 最大电压: 1mA 时 5VDC								
数字量输入隔离	内部光耦	隔离								
数字量输出类型	源型									
最大输出电流	0. 5A	0. 5A								
数字量输出隔离	内部光耦	内部光耦隔离								
L+,M 额定电压	24VDC(最	t大 30VDC)								

模拟量输入规范	SB AE02 SB AM03	SB AMO4	SB AE04	SB AMO5	SB AM06	SB AE06			
输入路数	2 路电压或电流 4 路电压或电流 6 路电压:								
测量范围		-10V~10V, -20mA-20mA							
满量程范围			-27647	~27648					
精度		满量程的 0.3%							
隔离	无								

模拟量输出规范	SB AM03	SB AMO5	SB AMO4	SB AMO6	SB AQ02	SB AQ04			
输出路数	1 路电压	1 路电压或电流 2 路电流 2 路电压或电流 4 路							
分辨率		电压: 11 位+符号 电流: 11 位							
满量程范围 (数据字)		0 到 27,648 对应 0-10V 和 0-20mA							
精度			满量	 程的 0.3%					
负载阻抗		电	以压: ≥1000	Ω 电流:	≤600 Ω				
隔离		无							
电缆最大长度	10m 屏蔽双绞线								

通讯板技术参数	SB CM01	SB CM01-R485	SB CM01-B485	SB CM01-R232	SB CM01-i485		
		电缆长度:1000 米; 电缆长度:1000 米;					
RS485 功能		隔离:无; 隔离: 有					
		ESD	ESD 防护: 有;				
		电缆					
RS232 功能		S					
		ESD [

温度信号板	SB AR02	SB AR02 SB AR04		SB ANO6	SB AT04		
通道数量	2 路	4 路	4 路	6 路	4 路		
传感器类型			NTC (10	К, 3950)			
测温范围			-50.0℃	~150.0℃			
法粉 花园			-500	~1500			
读数范围	 	阳选刑表	(放大	10 倍)	 		
分辨率	九十曲杯七	四地主化	0.	1℃	九十曲然相构起主机		
精度			满量程	的 0.5%			
断路、超限检测	有		:	有	有		
采集时间	200ms	400ms	20	Oms	400ms		
导线长度	最大 1	00 米	最大	30 米	最大 20 米		

热电阻选型表


温度系数	RTD 类型	最小值 (℃)	额定下限 (℃)	额定上限 (℃)	最大值 (℃)	精度@25℃	精度@-20-60℃
	Pt 10	-243.0	-200.0	850.0	1000.0	±1.0	±2.0
Pt 0.003850	Pt 50						
ITS90	Pt 100						
DIN EN 60751	Pt 200	-243.0	-200.0	850.0	1000.0	± 0.5	±1.0
	Pt 500						
	Pt 1000						
D. 0.000000	Pt 100	-243.0	-200.0	850.0	1000.0	± 0.5	±1.0
Pt 0.003902	Pt 200						
Pt 0.003916	Pt 500	-243.0	-200.0	850.0	1000.0	± 0.5	±1.0
Pt 0.003920	Pt 1000						
	Pt 10	-273.2	-240.0	1100.0	1295. 0	±1.0	±2.0
D4 0 002010	Pt 50						
Pt 0.003910	Pt 100	-273.2	-240.0	1100.0	1295.0	± 0.8	±1.6
	Pt 500						
	Ni 100						
N: 0 000700	Ni 120						
Ni 0.006720	Ni 200	-105.0	-60.0	250.0	295.0	± 0.5	±1.0
Ni 0.006180	Ni 500						
	Ni 1000						
LG-Ni 0.005000	LG-Ni 1000	-105.0	-60.0	250.0	295. 0	±0.5	±1.0

...........

Ni 0.006170	Ni 100	-105.0	-60.0	180.0	212. 4	±0.5	±1.0
Cu 0. 004270	Cu 10	-240.0	-200.0	260.0	312.0	±1.0	±2.0
Cu 0.004260	Cu 10	-60.0	-50.0	200.0	240.0	±1.0	±2.0
	Cu 50		-50.0	200.0	240. 0	±0.6	±1.2
	Cu 100	-60.0					
Cu 0.004280	Cu 10	-240.0	-200.0	200.0	240.0	±1.0	±2.0
	Cu 50	-240.0	-200.0	200.0	240. 0	± 0. 7	±1.4
	Cu 100						

热电偶选型表

DTD 米·利	最小值	额定下限	额定上限	最大值	精度@25℃	精度@-20-55℃
RTD 类型	(℃)	(℃)	(\mathcal{C})	(℃)	(℃)	(℃)
Ј	-210.0	-150.0	1200.0	1450.0	± 0.3	±0.6
K	-270.0	-200.0	1372.0	1622.0	±0.4	±1.0
T	-270. 2	-200.0	400.0	540.0	±0.5	±1.0
Е	-270.0	-200.0	1000.0	1200.0	± 0.3	±0.6
R&S	-50.0	100.0	1768. 0	2019.0	±1.0	±2.5
P	0.0	200.0	800.0		±2.0	±2.5
В		800	1820	1820	±1.0	±2.3
N	-270.0	-200.0	1300.0	1550.0	±1.0	±1.6
С	40.0	100.0	2315.0	2500.0	±0.7	±2.7
TXK/XK (L)	-200.0	-150.0	800.0	1050.0	±0.6	±1.2
4.5	-32512	-27648	27648	32511	±0.05%	± 0. 1%
电压		-80mV	80mV			

10.1 插上信号板, DIAG 指示灯不亮。

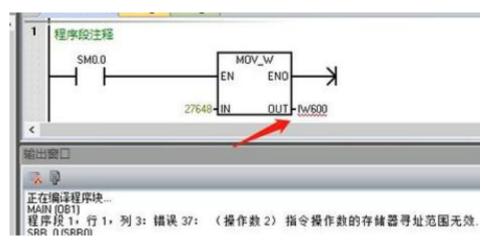
答: DIAG 指示灯用来指示信号板工作状态,只有在组态设置正确,并且把系统块下载到 PLC 后才会常亮绿色。灭,表示设备故障。

10.2 插上信号板, DIAG 指示灯闪绿灯。

答: DIAG 指示灯用来指示信号板工作状态,只有在组态设置正确,并且把系统块下载到 PLC 后才会常亮绿色。闪绿灯,表示设备组态错误,信号板不能正常与 PLC 正常通讯。

10.3 组态正确, 也下载系统块了, DIAG 指示灯还是闪绿灯。

答: 检查程序是否将 PORT1 初始化成 modbus 了。如果是,删除这部分程序。

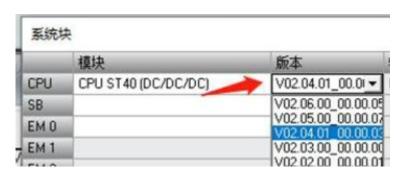

10.4 需要安装库吗?需要额外编程吗?

答:不需要。特定应用时需要设置几个寄存器,其他不需要编程。

10.5 模拟量通道直接读取 AIW、AOW 寄存器吗?

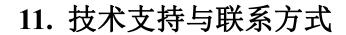
答: 不是, 重新映射到 IW、QW 区了, 直接读写即可, 查询请参考第 5 节内容。

10.6 编程界面 IW600 或 QW600 寄存器有红色下划线,编译不通过如下图:


答:有3种可能。

可能 1:编程软件版本低导致的,必须是 2.04 或以上版本。查看方法如下:

图中是 2.05 版本, 符合要求。


可能 2: 组态界面 PLC 主机版本过低,必须是 2.04 或以上,查看方法如下:

可能 3: PLC 的固件版本过低,也必须是 2.04 版本或以上,查看方法如下:

如果版本过低,需要升级 PLC 固件,升级方法咨询 PLC 主机厂家。

更多详情请咨询我们的客服与技术支持

客服电话: 0755-81483523

技术支持: 15112451246